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A SUFFICIENT CONDITION IN OPTIMAL CONTROL*

i

By E. B. Lee

ABSTRACT A2

A theorem is proven which covers most of the known cases
where L. S. Pontriagins’ Maximum Principle is a sufficient, as

well as a necessary, condition for optimal control.
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INTRODUCTION
Consider the system

2 = fO(x,t) + h°(u,t) (1)

x

A(t)x + h(u,t) (2)

with x(to) = X

o and xo(to) = 0. Here £°, nh°, A, and h are

continuous in all arguments. x is the system state, an nwctor;

u is the control, an m vector. x° is a scalar variable which

measures the quality of control.

If u(s) is any control function on the interval [to,t] we
will write the corresponding response of equations (1) and (2) as
iu(t) = (xg(t), xu(t)). The control u is restricted to a set

m

QCR'. It is assumed that either § is compact or that h, and h°

are such that

max{l-h(u,t) + Xoho(u,t)l
ueq .
n+1l

' A o o
exists for each te[to,T] and A = (A ,\)eR with A” < O.
It is further assumed that f°(x,t) is a single-valued, convex

function of x for each te[to,T], that is,
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dr° ) o o
3£—(x,t) (w-x) + £ (x,t) < £7(w,t)
for all x and weR" and te[to,T].
The following definitions are needed:

DEFINITION 1. u*(s) on [tO,T] is an extremal control if there

. 1
exists x(to) = (xo

,xg,...,xg) and A° = constant < 0, such that
A%n°(u*(s),s) + A(s) h(u*(s),s) =

max{k n°(u,s) + A(s) -h(u, s)l
uefl

with
A= - A (e - A° o1° (xu*(t) t), (7 denotes transpose).

Here x 4(t) is the response corresponding to u*(s), t<s<tT.

DEFINITION 2. The control u(s) 1s allowable if it is a measurable

real valued‘vector function with range in © on [to,T].

DEFINITION 3. The set of attailnability K(T,xo) is the collection

of end points of the responses %u(t) = (xg(t),xu(t)) which initiate
at (O,xo) for all allowable controls u(s) on [tO,T).

The problem of optimal control studied here 1s to select
allowable controls u(s) which "steer' the response xu(t) from the
initial point X, at time to to a prescribed target set G at time
T < @ and minimize the cost functional of control
c(u) = g{x(T)) + xO(T). Here g 1s a continuously differentiable
function of x. An allowable control which provides an absolute
minimum for C(u) amongst the set of all allowable controls which
steer xu(t) from X, to G is called an optimal control. Note, the

free end point problem results when G = Rn.
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DEVELOPMENT
A basic inequality is established and then the main theorem
i1s proven.
IEMMA. Let u*(s), t < 8 S_T be an allowable extremal control
with corresponding response X *(t) which initiates at x(t )=(0, x(t ))s
then X(T)-xu*(T)Z}(T)~w for A°¢0 and all weK(T,xo).
PROOF. Consider
d(X-X )
dt

0s0 \ .
A X t X-xu* + X-xu*

fl

A0 (£%(x xst) + O(u*,t)) +

(-8 (8% = 2° 2(x 0 ,8)) x

+ X-(A(t)xu* + h(u*,t)).

Upon integrating both sides between to and T we obtain
AOx0 (T) + A(T) %, (T) - A(E) x(t,) =

f DO(£0(x e (8),8) = (0 (£),8) x4 ()

O
+ 2%n° (ur (%) ,t) + x(t)-h(u*(t),t)}dt

Let xu(t) be any other response with initial value x, = x(t )
for which we calculate

AOx(T) + A(t) x,(T) - A(t,) -x(t

o)

/ {x (£, (£) ,8) - $E(x0 (8),8) x,(£))

+ 2%0°(u(t),v) + A(t)-n(u(t),t)las.

But A%h%(ux(t),t) + A(t)-h(u*(t),t) > A°n°(u(t),t) + A(t)-h(u(t),t).



e

Thus 17 2°(£% (x4 () ,8) = So(x e (£),8) expe (£)) 2 A2(£°(x,(£) )
afo(
- 3% xu*(t),t)oxu(t))

we obtain the desired inequality. This is certainly true if
2 < 0 and

R (e (8),8) xw (8) = 220 (£),60> S (£),8) 2, () -

(o]
- £ (x, (t),t),
which is the convexlty condition on £°.

Thus we have

xoxg*(T) + AM(T) x w (T) 2 Xoxg(T) + A(T)+x,(T) or

i(T)-%u*(T) > A(T)-® all &eK(T,x_) and the lemma
is established.
The basic inequality of the lemma enables us to establish
the sufficiency of the maximum principle in a number of cases.

These results are summarized as a theorem:

THEOREM,

A) Consider the cost functional of control C(u) = x°(T)
and as target set G a point x,. Let u*(s), tOS;sgi, be an allowable
extremal control which steers the corresponding response xu*(t)
from x_ at t_ to x; at T, then u*(s) is an optimal control.

B) Consider the cost functional C{u) = g(x(T)) + x°(T) with
g(x) a convex function of x and consider the target set G = Rn,
{this is the free end point problem). Let x(to) = x,. Then
u¥{s), togng, is an cptimal control if it is an allowable extremal
control with A(T) = (-1,- %%(xu*(T))), (The condition on A(T) 1is

called a transversality condition).
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C) Consider the cost functional C(u) = x°(T) and the convex,
closed, target set G = {xly(x) S_C}CRn, where 7y 1s differentiable
and ¢ a constant. Let u¥*(s), t,<s<T, be an allowable extremal
centrol which steers xu*(t) from x  at t, to x,€G at T with A(T)
an interior normal’ to G at xu*(T) on 0G, then u*(s) is optimal
if such a contrcl exists. (If there is no such u*(s) then the
minimum may occur interior to G in which case B) applies with
A{T) = (-1,0,0...0) and if G is jJust one point part A) is obtained.)
PROQF :

A) From the lemma

i(T)-%u*(T) > A(T) -0 for 2° < o all &eK(T,xo).
Thus

MT) % (T) + x°x3*(m) > A(T)x, (T) + A%x(T).
But, comparing only those responses that end at Xqs that 1s, those
for which xu*{T) = xu(T) = X;, the basic inequality becomes

x°x3*(T) > Xoxg(T).

Since A® < O we have C(u*) = xg*(T) g_xg(T) = C(u) and therefore
u*{s) is optimal.
B) With A{T) = (-1, :%g(xu*(T))) the inequality of the lemma

-%%(Xu*(T)).xu*(T) - xg*('x') > :%-%(xu*(T))-xu(T) - xﬁ(T)

e - - - - . - -

T X is an interior normal to G at x on 3G if X\ is orthogonal to a
support plane of G at x and is directed into the halfspace con-
taining G. Thus G need not have an interior to have interior
normals, Note if G does not have an interior we can still
approximate it by a y(x).
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Adding and subtracting g(x x(T)) on the left side and g(x,(T)) on
the right side the last inequality becomes

20 (T) - g(x e (T)) + 8(x,u(T))- SBlx (1)) % e (8) 2
x0(T) - &(x,(T)) + 8(xy(T)) - Lx,e(T)) %, (T).

But,

B (x (1)) - (g (T) = %, (1) + 82, (1)) 2 8 (T))
if g is a convex function of x.
Therefore
“0(ux) = =20y (T) - glx(T)) >
(1) - g(x,(T)) = ~C(u),
or C(u*) < C(u). Hence part B) is established.
C) Assume for simplicity that vy was picked to be a convex
function on ¢ with 03 = {x,y(x) = cl. Consider only boundary
points xu*(T) where it 1s required that A(T) = { (xu*(T))}

in order for A(T) to be an interior normal to G at xu*(T) on oG,
{let k¥ = 1).
The inequality of the lemma can then be written

MT) % (T) = 280 (1) + {780 (1)) }oxu (2) 2
MT) %, (1) = 2%(T) + {3(x 0 (1) }ox (1)

If x,x(T) in on the toundary of G it is also true that
7(xu*(T)) =c Z_y(xu(T)) for all allowable responses xu(T)eG.
Adding the last two inequalities we obtain

o} o)

Ax0 (T) = SE(x (1)) - (T) + ¥(xu(T)) >

C_0 o)

2Ox2(T) - Qx4 (T)) -x,(T) + vix (T)).

But again if xu*(T) is on oG and xu(T) is in the convex set G we




have

Dhx o (7)) - Txe (T) = 2 (T)T + v(x,(T)) > ¥(x,e(T))
and therefore

c(u*) < C(u). Q.E.D.

REMARKS

If the set of attalnability is closed there will exist optimum
control provided there is at least one control that steers the
regponse to the desired end point xleG, assuming G is also closed.
The property of closure is discussed in reference 2 in which a
biblicgraphy and discusslon of cases are presented. The set of
attalnability is also known to be closed if

h{u,t) = B(t)u, £°(x,t) = x-W(t)x and h°(u,t) = u-v(t)u,
for W(t), U(t) positive definite on [to,T].

When the set of attainability is closed, in the above case,
the inequality of the lemma establishes that its lower (exterior
normal with A° < 0) surface is convex. For if it was otherwise
we would be led to a contradiction of the maximum principle. Note
that the transversality condition (reference 1) follows from the
established inequality of the lemma since i(T) must be an

exterior normal of K(T,xo) at the corresponding response end point,

A

x.u*(T)°
CONCLUSIONS
It has been proven the Maximum Principle is often a sufficient

as well as necessary condition for optimal control,.
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